To export a Python DataFrame to an SQL file, you can use the ‘pandas‘ library along with a SQL database engine such as SQLite. Here’s an example using SQLite as the database:

import pandas as pd
from sqlalchemy import create_engine

# Create a sample DataFrame
data = {'Name': ['John', 'Alice', 'Bob'],
        'Age': [28, 25, 22],
        'City': ['New York', 'San Francisco', 'Seattle']}

df = pd.DataFrame(data)

# Specify the SQLite database file
db_file = 'example.db'

# Create a SQLite engine
engine = create_engine(f'sqlite:///{db_file}')

# Export the DataFrame to SQLite
df.to_sql('example_table', engine, index=False, if_exists='replace')

# Verify the data is in the SQLite database
query = 'SELECT * FROM example_table'
result = pd.read_sql(query, engine)

# Print the result
print(result)

In this example:

  1. We create a simple DataFrame named ‘df‘.
  2. We specify the SQLite database file (‘example.db‘) and create a SQLite engine using the ‘create_engine‘ function from the ‘sqlalchemy‘ library.
  3. We use the ‘to_sql‘ method of the DataFrame to export it to the SQLite database. The parameters are:
    • 'example_table': Name of the table in the database.
    • engine‘: The SQLite engine.
    • index=False‘: Exclude the DataFrame index from being stored as a separate column in the database.
    • if_exists='replace'‘: If the table already exists, replace it.
  4. We then run a SELECT query (‘SELECT * FROM example_table‘) to retrieve the data from the SQLite database and print the result.

Make sure to install the necessary libraries if you haven’t already:

pip install pandas sqlalchemy

You can adapt this example for other SQL databases by changing the database engine in the ‘create_engine‘ function and adjusting the connection parameters accordingly.

Categories: PythonSQL

0 Comments

Leave a Reply

Avatar placeholder

Your email address will not be published. Required fields are marked *